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RESEARCH ON DYNAMICS OF COMPOSITE

AND SANDWICH PLATES, 1979-81

C.W. Bert*

Abstract - This paper presents a survey of the literature concerning dynamics

of plate-type structural elements of either composite material or sandwich

construction. Papers from mid-1979 through early 1982 are reviewed.

Particular attention is given to experimental research and to linear and

nonlinear analysis. Configurations include rectangularly orthotropic,

cylindrically orthotropic, and anisotropic plates; laminated plates; and

thick and sandwich plates. Free and forced vibration, flutter, and impact

are considered.

1. INTRODUCTION

The fundamentals of the mechanics of composite and laminated plates

have been discussed in a previous two-part survey [1], which was updated in

1979 [2]. Other recent surveys that are closely related to the present work

include the present author's survey of vibration of composite structures

[3], one by Leissa on complicating effects in free vibration of plates [41,

another by the same author on vibration, buckling, and postbuckling of com-

posite plates [5], and one by Reddy on finite-element analyses of composite

plates and shells [6].

Information sources referenced in this survey are primarily papers in
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the open literature and a few additional reports. The followinq topics

are not included: anisotropic-crystal plates, magnetoelastic effects, and

plates with cracks. Since it is not possible to include all of the work

published in the time frame covered, the author apologizes to persons whose

work may have been inadvertently omitted.

2. EXPERIMENTAL RESEARCH

Here, we discuss research which is primarily experimental, rather than

analytical, in nature. It is very encouraging to note the increased activity

in this category of research since the 1970 survey [2].

2.1 Sinusoidal and Random Loadings

Crawley [7] investigated the resonant frequencies and mode shapes of a

series of clamped rectangular plates and cylindrically curved panels. The

plates were of graphite/epoxy and hybrid graphite/epoxy/aluminum alloy,

laminated in various symmetric lamination schemes. The experimental results

were compared with those of a mixed finite element developed by Lee and Pian

[8]. Agreement for mode shape was excellent while that for frequencies was

reasonable, with discrepancies attributed to differences between dynamic

flexural and static in-plane moduli.

Rasskasov and Sokolovskaya [9] investigated the static and frequency

response of a series of hinged and combined-support rectangular plates of

single-core and double-core sandwich construction. They included four

lamination schemes symmetric with respect to the midplane and four unsym-

metric. The stiff layers were of sheet steel and of glass/polymer, while

the cores were of foam plastic. The results were compared with analytical

results for hinged supports.

Teh and White [10] conducted experiments on eight-layer graphite/epoxy

L.n|
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(and aluminum-alloy) panels with clamped edges. To simulate conditions

representative of an aircraft flight environment, the panels were subjected

to a combination of uniaxial compression and random acoustic pressure load-

ing. Experimentally determined frequencies were generally lower than those

obtained by Rayleigh-Ritz theoretical analysis.

Chamis and his associates £11] reported on a very innovative series of

experiments to determine the resonant frequencies and damping factors of

laminated panels previously subjected to damage induced by residual stresses

and monotonic or cyclic applied loads. The materials were glass/epoxy and

high-modulus-graphite/epoxy in various lamination schemes. It was concluded

that the dynamic response of the glass/epoxy panels was susceptible to low-

level damage, w-hile that of the graphite/epoxy ones was not.

2.2 Impact and Blast Loading

There has been considerable recent experimental research on impact

loading of composite plates, as surveyed recently by Takeda and Sierakowski

[12]. First should be mentioned the extensive series of experiments reported

by Takeda, Sierakowski, and their associates [13-16]. These were all con-

cerned with glass/epoxy laminated panels subjected to local ballistic impact,

with emphasis on delamination failure mechanisms.

Rhodes and his associates [17] investigated low-velocity impact damage

in graphite/epoxy panels, while Hayes and Rybicki [18] reported on experi-

ments on panels of graphite/epoxy, aramid/epoxy, and their hybrids. They

also concentrated on delamination failure. Knauss [19] reported on the use

of the moire fringe technique to determine the phenomonological aspects of

damage due to low-velocity impact in graphite/epoxy laminates.

In a series of experiments, C.T. Sun of Purdue University and his

LA
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associates [20-22] focussed attention on the ccntact law and its role in

the dynamic response of locally impacted plates.

Rajamani and Prabhakaran [23] investigated the response of unidirec-

tional glass-epoxy plates subjected to blast loading produced by a shock

tube. Both solid plates and plates with a central circular hole were

studied. It is noted that the measured dynamic amplication factors for

glass/epoxy averaged about 35% lower than those for homogeneous aluminum-

alloy plates.

3. LINEAR ANALYSES OF THIN PLATES

These analyses assume linear stress-strain behavior of the material

and small deflections so that the strain-displacement relations are linear.

Furthermore, in many cases (Sections 3.1-3.3), the material is assumed to be

macroscopically honoyeneous through the thickness. Thus, the material may

consist of either a single layer of composite material, or multiple layers

provided that they all have the same orientation. Three categories of

reinforcement geometry are considered: specially orthotropic (Section 3.1)

and generally orthotropic (equivalent to anisotropic) with respect to

rectilinear coordinates (Section 3.2), and cylindrically orthotropic (such

as approximated by manufacture using the filament-winding process) in Section

3.3. Thin laminates (nonhomogeneous through the thickness) are discussed in

Section 3.4.

3.1 Specially Orthotropic Thin Plates

Such plates have the principal-material-symmetry axis oriented parallel

to a geometric axis of the plate (such as a center line or axis of symmetry).

Sakata [24,25] reviewed the use of reduction methods to convert numerical

results for isotropic plates to those for specially orthotropic plates

(see Refs. 1-5 in [2]).
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In a series of papers Laura and his associates [26-31] used polynomial

approximating functions in conjunction with either the Rayleigh-Ritz or the

Galerkin method. References [26-28] were concerned with rectangular plates

having elastically restrained edges: [26] analyzed various combinations

of free and elastic edges; [27] had attached concentrated mass; and [28]

treated plates tapered in two directions. Reference [29] treated the

solid circular planform; [30] considered polygonal planform; and [31] pre-

sented a methodology for analysis of either clamped or simply supported

planform (with numerical results only for regular polygons).

A number of other analyses were concerned with rectangular-planform

plates. For example, Wilson [32] considered an infinite plate strip on an

elastic foundation and subjected to line loads and moments traveling at

constant speed. It is cautioned that in this analysis, an incorrect eqViva-

lent isotropic plate approach is used. For example, the Poisson-bending

and twisting term

4
2(D + 2D66) w-y2

is replaced by the following much more restrictive term:

4w

*2(0D'1) j.
11 22 3x 2 y2

where D11 and D22 are the flexural rigidities in the x and y directions,

D12 is the Poisson-bending rigidity, D66 is the twisting rigidity, w is the

plate deflection, and x and y are the longitudinal and transverse directions

in the plane of the plate.

Sakata [33' treated simply supported rectangular plates with stepped

thicknesses, using the reduction method (see [24,25]). Ganesan and Dhotarad
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[34] analyzed plates tapered in one direction, with temperature-dependent

elastic properties, and subjected to a temperature gradient. Using the

finite-difference method, they considered all edges clamped,all edges

simply supported, and opposite edges clamped and simply suppoitcd. Sobotka

[35] analyzed viscoelastic plates with the latter two combinations of boun-

dary conditions. However, this analysis has been severely criticized in [36].

Kuttler and Siglillito [37] applied to clamped rectangular plates their

method [38] for obtaining upper and lower bounds on the natural frequencies.

Bucco et al. [39] applied a combination of the finite-strip method [40] and

the deflection-contour method [41] to various shapes of isotropic plates

and to clamped, square, orthotropic plates. Narita [42] used a series

method to attack the problem of free vibration of a plate that is partially

restrained'along portions of its edges and simply supported on the remainder.

Simply supported plates of parallelogram planform were considered by

Sakata [43] using the reduction method (see [24,25]). Forced vibration of

polygonal plates with linear damping was analyzed by Katsaitis [44]. Plates

of infinite planform extent were considered by Busch-Vishniac [45], who

derived the driving-point impedance in the presence of initial tension,

and by Das and Roy [46], who considered arbitrary forcing functions for

plates on elastic foundations.

3.2 Anisotropic (Generally Orthotropic) Thin Plates

In a series of papers [47-49], Laura and his associates consilered

plates of rectangular planform, using polynomial approximating functions

and either the Rayleigh-Ritz or the Galerkin method. In [47], elastically

restrained edges were treated, and in [48], clamped edges and in-plane

initial loads were included. In [49], the effect of a small, free-edge

diagonal cutout at a corner was investigated.
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Sakata and Hayashi [50] conducted both analytical (using the reduction

method) and experimental investigations of parallelogram plates.

Irie and Yamada [51] used the Rayleigh-Ritz method, in conjunction

with spline functions, to analyze elliptic plates with confocal elliptic

holes. Although the equations were developed for general orthotropy, they

were implemented numerically only for special orthotropy.

3.3 Polar (Cylindrically) Orthotropic Thin Plates

Cylindrically orthotropic (or polar orthotropic) plates are those which

have directions of material symmetry that coincide with a circular cylindri-

cal coordinate system. In practice, they are made by winding filaments cir-

cumferentially on a circular mandrel. In a plate (or disk) configuration,

they are most widely used as reinforcements at circular cutouts or as

rotating disks (energy-storage flywheels, and turbine or compressor disks).

In both of these categories of application, biakial loadings are present

and the most efficient designs involve varying thickness (radial taper).

Surprisingly, during the time interval covered in this survey, apparently

only one paper on vibration of a varying thickness plate subjected to in-

plane preload appeared. This was the work of Dyka and Carney [52], in

which they considered a circular annular plate with parabolic thickness

variation and ring-type stiffeners at both edges, and subjected to uniform

radial compressive load at the outer edge.

Circular plates subjected to centrifugal preload were considered by

several investigators. The in-plane torsional vibrations of both radially

tapered and uniform-thickness disks were analyzed by Ochan [53], who

developed expressions for the critical speed of rotation for dynamic insta-

bility. Flexural vibration of a uniform-thickness plate with ring-type

stiffeners at both edges was treated by Dyka and Carney [54]. Laura et al.
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[55] made Rayleigh-Ritz and FEM (finite-element method) analyses of uniform

plates subjected to uniform in-plane prestress.

Flexural vibration of varying thickness plates without preload were

studied by several investigators. Lenox and Conway [56] presented a closed-

form solution for vibration of a plate with a parabolic thickness variation

vibrating in any arbitrary combination of radial and circumferential nodes.

This solution should be extremely valuable to assess the accuracy of various

approximate numerical techniques. Bell and Kirkhope [57] considered plates

with piecewise stepped radial thickness variation by extending the isotropic

transfer-matrix analysis due to Ehrich [58].

Both FEM analysis and experiments were used by Ginesu et al. [59] to

study flexural vibrations of uniform-thickness plates with various boundary

conditions. Gorman [60] used the FEM analysis of [59] to develop extensive

tabular results for uniform-thickness annular plates with various combinations

of clamped, free, and simply supported edge conditions. Avalos and Laura

[61] used a Galerkin polynomial approach to treat the axisymmetric flexural

modes of annular plates with elastic rotational restraints. Tani [62]

investigated the dynamic instability of annular plates subjected to pulsating

torsion in their plane.

Sector plates have a quadrilateral planform in the shape of a sector

of an annular circular plate. The Rayleigh-Ritz method was used to analyze

free vibrations of such plates. Irie et al. [63] used spline functions as

the admissible function, while Ramaiah [64] used simple polynomials.

3.4 Laminated Thin Plates

In the time frame covered in this survey, there have been relatively

few linear analyses of thin laminated plates. C.T. Sun of the University
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of Florida presented an excellent tutorial exposition [65]. Crawley and

Dujundji [66] made a Kantorovich variational analysis of symmetrically

laminated cantilever plates. Lin [67] considered clamped, free, and

simply supported plates resting on a viscoelastic foundation and subjected

to a constant force moving along the plate at constant speed.

Stavsky and his associates [68,69] considered the arbitrary-mode vibra-

tion of circular plates consisting of concentric cylindrically orthotropic

layers. Two different eigenvalue solution schemes were used: in [68] a

classical approach was used, while in [69] a finite-difference scheme was

applied. In these works, it was shown that certain lamination schemes are

capable of producing higher fundamental frequencies that can be attained by

homogeneous plates of either constituent material. This is not surprising,

as it is the basis for the use of sandwich construction (see Section 4.3).

Dynamic fracture mechanics of a laminated plate was considered in [70].

Laminated composite plates (cross-ply laminates and isotropic-material

laminates) with discrete stiffeners were analyzed by Chao and Lee [71]

using a classical approach.

Although the potential for tailoring of laminates is usually mentioned

as one of their advantages, in practice to date, most optimization has been

on an ad hoc basis and has not considered dynamic criteria (objective

functions or constraints). A paper which attempts to remedy this situation

is the recent formal optimization, using nonlinear mathematical programming,

by Rao and Singh [72]. They considered minimum-weight design with constraints

on minimum fundamental natural frequency, minimum buckling load, and maximum

static deflection.
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4. LINEAR ANALYSES OF MODERATELY THICK PLATES

Due to the low thickness shear moduli of fiber-reinforced composite

materials relative to their flexural elastic moduli, it is advisable to

include thickness shear deformations (sometimes called transverse shear

deformations) in dynamic analyses of plates made of such materials. This

is often necessary even in the case of plates having geometrical parameters

such that they would be considered thin if they were constru, of homo-

geneous isotropic material. This motivation, which was Doin out in [1,2],

apparently has resulted in the generation of a number of rec analyses,

discussed in Section 4.1 and especially in Section 4.2. Si .iere is

considerable analogy between so-called sandwich plates and homogeneous or

laminated plates with thickness shear deformation included, sandwich plates

are discussed in Section 4.3.

4.1 Specially Orthotropic, Generally Orthotropic, and Cylindrically

Orthotropic Plates with Thickness Shear Flexibility

Kuznetsov et al. [73] presented a new, improved theory which includes

thickness stretching as well as thickness shearing deformation. They applied

their new theory in a Ritz-Galerkin analysis of a cantilever, rectangular

plate of CFRP (carbon-fiber reinforced plastic) and hybrid glass FRP and

CFRP plates.

Dobyns [74] presented a simplified analysis of simply supported plates

subjected to blast loading. Actually he called his materials laminates,

but neglected bending-stretching coupling (Bij) and bending-twisting coupling

(Dl6 and 026). The symbols are classical laminated plate theory notation

(cf. [75] or [76]). Thangam Babu et al. [77] extended the Ventakeswara Rao

et al. orthotropic high-precision finite element [78] by addinp the effects

of an elastic foundation.

Patra and Iyengar [79] made a displacement-function FEM analysis of



a generally orthotropic rectangular plate clamped at its outer edges and

containing a free-edge circular or rectangular cutout.

Cheung and Chan [80] applied the finite-strip method (see [40]) to

cylindrically orthotropic sectorial plates (see also [63] and [64]).

4.2 Laminated Plates with Thickness Shear Flexibility

In a recent monograph, Bolotin and Novichkov [81] covered many differ-

ent aspects of the mechanics of laminates. Chapter7 is concerned with vibra-

tion and wave propagation of laminated plates including thickness shear

deformation.

Green and Naghdi [82] developed a new dynamic thermoelastic theory of

plates laminated of orthotropic materials and applied it to analysis of pro-

pagation of harmonic waves in three-layer plates. Khoroshun [83] also

developed a new theory of laminated plates and shells which differs from

the classical Reissner-Mindlin type theories (and Timoshenko beam theory)

in that it does not require ad hoc determination of the shear correction

factors. In this respect it is analogous to the new theory of homogeneous

plates introduced by Levinson [84]. Khoroshun and Ivanov [85] applied

Khoroshun's new theory to wave propagation in two-layer laminated plates.

Chatterjee and Kulkarni [86] developed a dynamic approach to deter-

mination of the shear correction factors for the Whitney-Pagano shear-

deformable laminate theory [87]. These were obtained by matching cutoff

frequencies for propagation of thickness shear waves predicted by plate and

elasticity theories. In general they result in slightly lower values than

those predicted by Whitney [88] using a static approach. Chatterjee and

Kulkarni [89] made an extensive investigation of the effects of material

damping, temperature, and moisture on e panel flutter of graphite/epoxy

laminates.

The moving-load response of a two-la _r plate on a compressible fluid
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half-space was investigated by Chonan [90]. A similar configuration was

studied by Crighton [91].

Reddy [92] used his isoparametric finite element to analyze free

vibration of simply supported rectangular plates of angle-ply lamination

scheme. He gave numerical results showing the effects of plate aspect

* ratio, relative thickness, and lamination angle on plates of two different

materials typical of high-modulus graphite/epoxy and high-strength gra:.hize/

epoxy. Reddy and Chao [93] studied the effect of reduced integration,

mesh size, and element type (linear or quadratic) on predicted natural fre-

quencies of cross-ply and angle-ply plates.

Witt and Sobczyk [94] analyzed the cylindrical-bending response of

simply supported laminated plates to random-pressure loading. Sih and Chen

[95] performed a dynamic fracture mechanics analysis of a four-layer plate

containing a crack and subjected to sudden stretching. In a series of

three papers, Guyader and Lesueur [96-98] considered the vibration modes,

transmission under oblique plane-wave excitation, and transmission under

reverberant sound excitation.

Wave propagation in laminated plates was recently considered by two

different sets of investigators. Kim and Moon [99] used a Laplace transform

in time and a Fourier transform in space and reported information on longi-

tudinal waves, thickness waves, and wavefront surfaces. A similar analysis

was made by Sun and Tan [100], who then tied it in with Sun's previous

impact-law work [20-22] to predict plate response to localized impact loading.

Certain materials, including fiber-reinforced composites with soft

matrices, biological tissues, and brittle materials such as concrete, have

quite different stress-strain curves when loaded in compression rather than
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tension. As a first approximation to the stress-strain behavior of such

materials, Timoshenko 001] (one dimensional case) and later Ambartsumyan

[102] (general case) suggested the use of a bilinear approximation, with

different moduli in tension and compression (thus called bimodular). This

approach was extended to fiber-governed soft-matrix composites in [103].

Recently Bert, Reddy, et al. [1041 presented the results of closed-form

and FEM analyses for free vibration of rectangular plates cross-plied of

such bimodular composite materials. More recently Reddy [105] reported on

FEM analyses of such plates subjected to transient loadings.

A rather specialized category of laminate is a plate with unconstrained

damping treatment, usually on one side of a substrate, so that the laminate

has a total of two layers. The plate substrate-is usually constructed of

a homogeneous, isotropic material (although it could be of composite mate-

rial), and the damping layer is usually a low-modulus, high-damping mate-

rial such as an elastomer. Recent research into various kinds of damping

treatments was surveyed by Nakra [106].

In a series of three papers, Ramachandra Reddy and his associates

[107-109] analytically and experimentally investigated the response of

plates with unconstrained damping layers to random acoustic excitation.

4.3 Sandwich Plates

A sandwich plate is one having a lightweight, flexible, relatively

thick core (or several cores) with attached, stiff, relatively thin facings.

Thus, it is customary to neglect transverse shear deformation in the

facings and to include all of the transverse shear deformation in the core

(or cores). The geometric configuration may be either symmetric or

unsymmetric with respect to the midplane of the core.
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Two papers were concerned with the effects of the in-plane inertia

terms. Markus and Nanasi [110] made an extensive investigation of axi-

symmetric free vibration modes of clamped circular plates with isotropic

facings and cylindrically orthotropic core. Grover and Kapur [111] ana-

lyzed the transient response of undamped, simply supported, rectangular plates

subjected to a half-sine acceleration pulse. The materials were all isotropic;

however, the facings were unsymmetric with respect to the mid-plane of the

core. It was found that for relatively short loading durations, the effects

of both rotatory and in-plane inertia actions were significant, while for

relatively long shock durations, their effects were small.

Chonan [112] made a theoretical analysis of an infinitely long plate

with thick facings and initial, in-plane, compressive stresses and subjected

to a line load moving at constant speed. In another paper [113], the same

author analyzed both axisymmetric and unsymmetric modes of circular annular

plates with initial radial tension and elastically supported at both the

inner and outer edges. Gupta and Jain [114] analyzed the free vibration of

circular annular plates with linear radial thickness variation, using a

cubic spline method.

Two papers were concerned with plate response to random acoustic load-

ing. Ramachandra Rao and his associates [115] made a Galerkin-type analysis

of clamped square panels with isotropic, elastic facings and isotropic,

viscoelastic core. Reasonable agreement with results of experiments was

obtained. Narayanan and Shanbhag analyzed the sound transmission and struc-

tural response of an ordinary isotropic sandwich panel [116] and one backed

by an acoustic fluid cavity [117].

Ibrahim and his associates [118] made one of the few recent analyses

of sandwich plates with facings of anisotropic material and arranged
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unsymmetrically (incorrectly called unbalanced) with respect to the core

I

middle plane. They considered simply supported rectangular plates with

cross-ply and angle-ply facings.

In a series of two pioneering papers, Park and Bertoni [119,120]

analyzed elastic wave propagation in a hexagonal-cell honeycomb core (not

a complete sandwich). In the analysis they considered the discontinuous

nature of the detailed honeycomb geometry. Thus, the waves considered were

Bloch waves, which are analogous to plane waves in an elastic continuum.

The purpose of their investigation was in support of the use of high-

frequency waves for nondestructive evaluation of honeycomb cores and panels

with honeycomb cores. However, in the light of the widespread use of hexa-

gonal-cell cores in aircraft structural panels, their work should be of

great interest to the structuraly dynamics community as well. In the first

paper, their results showed that the honeycomb acts as an elastic continuum

only at low frequencies. In the second paper they made a detailed study of

the dispersive nature produced by the periodic natureof the structural con-

figuration.

Torvik [121] recently reviewed the analysis and design of constrained-

layer damping, i.e., a sandwich consisting of a flexible, high-damping core

with thin, stiff, low-damping facings. For such structures with equally

spaced discrete stiffeners, Slazak and Vaicaitis [122] developed an

ingenious extension of the transfer-matrix method.

Recently, there has been considerable activity aimed toward the

development of finite-element models of damped sandwich panels (or

constrained-layer damping, if the reader prefers that terminology) as

witnessed by [123-128].
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5. NONLINEAR ANALYSES

Although nonlinear analyses obviously involve more computational

effort than linear ones, the former are sometimes necessary, in these

two instances in particular: (1) large-amplitude vibration (geometric

nonlinearity) in which the slopes are sufficiently large to require the

use of nonlinear strain-displacement relations, and (2) nonlinear consti-

tutive equations.

5.1 Geometrically Nonlinear Thin Plates

Although the formulation of the equations governing the fundamental

kinematic behavior of thin isotropic plates in the presence of geometric

nonlinearity is generally attributed to von Karman in 1910 [129], it was

not brought into the formulation of laminated composites until the work of

Whitney and Leissa in 1969 [130].

The most comprehensive work on the geometrically nonlinear analysis

of both the static and dynamic behavior of thin plates is Chia's recent book

[131]. Particularly pertinent here are Chapter 1 on nonlinear theory of

laminated plates and Chapters 6 and 8 on postbuckling behavior and nonlinear

flexural vibration of anisotropic plates and of unsymmetrically laminated

anisotropic plates.

Table 1 is a summary of recent research papers [132-142] on geometrically

nonlinear vibration of thin anisotropic and/or laminated plates. It should

be mentioned that in [138], a specific investigation was made to illustrate

the errors that can result from the use of Berger's approximation [143].

JM
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5.2 Geometrically Nonlinear Plates with Thickness She Flexibility

Recently, there has been considerable analytical research on plates

which are geometrically nonlinear and yet have thickness shear deformation

and rotatory inertia. This research, however, has emanated from only five

research teams. The most extensive work was by Sathyamoorthy, either alone

[144-149) or co-authored with Chia [150-153). In these investigations of

a variety of planform geometries, the same general methodology was used

throughout: Galerkin solution in conjunction with Runge-Kutta numerical

integration. No laminated plates were considered, although both specially

orthotropic and generally orthotropic ones were; see Table 2 for details.

It is interesting to note that in [146-148], Sathyamoorthy investigated

the use of the Berger hypothesis [1431 and found that it did not result in

more than about 5% error for the cases investigated. Wang and Wang [154]

used the Galerkin method and the method of multiple scales.

The most extensive finite-element work was by Reddy and his co-workers

[155-160]. They investigated a variety of material classes and both free

vibration and transient loading, as can be seen in Table 3. Also see [161-162],

5.3 Plates with Nonlinear Material Behavior

Due to the mathematical complexities involved, there have been very few

analyses of composite panels with nonlinear material behavior. Katsaitis

[1631 considered the sinusoidally forced vibration of a clamped, rectangular,

thin plate of specially orthotropic material having nonlinear damping.

Ni [164] used a quadrilateral finite-element approach based on the finite-

difference energy method to analyze thin panels constructed of materials

with a cubic nonlinearity in in-plane shear deformation. Geometric non-

linearity was also included.
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Table 2. Galerkin-Type Analyses of Large-Amplitude Vibration
of Thick Anisotropic Plates

Planform Matl. Flexural

Investigator Ref. Geometry Class* Boundary Conditions

Sathyamoorthy 144 Rectangular RO Simply supported

Sathyamoorthy 145-146 Parallelogram RO Clamped

Sathyamoorthy 147 Circular RO Clamped

Sathyamoorthy 148-149 Elliptic RO Clamped

Sathyamoorthy 150 Circular RO Clamped
& Chia

Sathyamoorthy 151-152 Parallelogram GO Various
& Chia

Sathyamoorthy 153 Rectangular GO Various
& Chia

Wang & Wang 154 Rectangular RO Clamped & simply
supported

The symbols GO and RO denote generally orthotropic and rectangularly
orthotropic, respectively.

Table 3. Finite-Element Analyses of Large-Amplitude Vibration
of Thick Anisotropic and/or Laminated Plates

Planform Matl.

Investigator Ref. Geometry Class* Type of Problem

Reddy, Huang, 155 Circular CO Free vib.
& Singh (axisymmetric modes)

Reddy & Huang 156 Circular CO Free vib.

annular

Reddy & Chao 157 Rectangular RO Free vib.

Reddy & Chao 158 Rectangular LA Free vib.

Reddy 159 Rectangular LA Free vib.
w/rectangular
cutout

Reddy 160 Rectangular LA Transient

Kanaka Raju 161 Rectangular RO Free vib.
et al.

Mota Soares 162 Rectangular RO Transient
et al.

*The symbols CO, RO, and LA denote cylindrically orthotropic, rectangularly

orthotropic, and laminated anisotropic, respectively.
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In a series of two reports [165-166], Zak and Pillash used a quadri-

lateral finite element to model the transient behavior of laminated plates

with geometric nonlinearity and orthotropic elastic-viscoplastic material

behavior. The numerical time integration was accomplished by a finite-

difference technique.

6. TRENDS AND SUGGESTIONS FOR FUTURE RESEARCH

These trends are notable in the research reviewed here:

* Increased emphasis on experimental research

* Considerable increase in the number of analyses including

thickness shear flexibility

* Continued expansion of the use of the finite-element method,

especially in the analysis of nonlinear problems

The author believes that the following aspects need to be investigated

more fully in the future:

* Analyses of plates under transient loading

* Expanded attention to more realistic material models, including

nonlinear stress-strain relations and material damping [167]

e Analyses of geometrically nonlinear panel flutter

* Interaction between vibration loading and material flaws,

including fatigue crack propagation

a Study of the effects of laminate residual stresses, due t)

thermal-expansion mismatch, on vibration response of laminated

plates

* Increased attention to material and laminate optimization,

including hybrid composites
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